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PROLOGUE

The 7th International Conference on Approximation Methods and Numeri-
cal Modeling in Environment and Natural Resources held in Oujda, Morocco,
on 17-20 May 2017. This Conference was jointly organized by Numerical
Analysis and Optimization Laboratory of the University Mohammed First of
Oujda (Morocco), the Department of Applied Mathematics of the University
of Granada (Spain), and the Applied Mathematics Laboratory of the Univer-
sity of Pau & CNRS UMR 5142 (France). The term MAMERN comes from
the French acronym “Méthode dApproximation et Modélisation Numérique en
Environnement et Ressources Naturelles”. The first conference MAMERN05
was held in Oujda, Morocco, on May 9-11, 2005, the second one MAMERN07
was held in Granada, Spain, on July 11-13, 2007, the third one MAMERN09
was held in Pau, France, on June 8-11, 2009, the fourth one MAMERN11 was
held in Saidia, Morocco, on 23-26 May, 2011, the fifth one MAMERN13 was
held in Granada, Spain, on 22-25 April 2013, and the sixth one was held in
Pau, France, on 31 May-5 June 2015. This meeting is a biennial international
conference co-sponsored by CNRS: Centre National pour la Recherche Sci-
entifique (France), CNRST: Centre National pour la Recherche Scientifique et
Technique (Morocco) and IMACS: International Association for Mathematics
and Computers in Simulation. Selected papers from each MAMERN confer-
ence are published, after a refereeing process, as a special issue of the journal
Mathematics and Computers in Simulation.

This volume contains the abstracts of the plenary lectures and contributions
presented at MAMERN VII-2017, and the USB key includes the extended ab-
stracts of the contributions. The scientific program of the conference consisted
of 7 invited plenary lectures, 4 mini symposiums with about 60 talks and 60
contributed talks and posters.

This conference was attended by participants coming from thirteen differ-
ent countries: Algeria, Brazil, France, Germany, India, Madagascar, Morocco,
Netherlands, Portugal, Saudi Arabia, Spain, Tunisia, and Venezuela.

The aim of the conference was to bring together researchers, scientists, en-
gineers, and students to exchange and share their experiences, new ideas, and
research results about approximation, numerical modeling and their applica-
tions in the environment sciences and natural resources.



viii

The topics of the conference are
- Approximation and modeling applied to environment sciences and nat-

ural resources.
- New applications and developments in approximation methods.
- Mathematics and computation in geosciences.
- Modeling of ecosystems.
- Oceanographic and coastal engineering.
- Numerical modeling of flow and transport in porous media.
- Mathematical analysis of models in porous media.
- Multi-Scale Modeling of Flow and Transport in Porous Media.
- Statistical modeling in geosciences. Uncertainty quantification.
- Stochastic partial differential equations.

The conference could not have been held without the financial support of the
organizing institutions. Special acknowledgment is due to the Department of
Applied Mathematics of University of Granada (Spain).

We would like to thank all the organizers of the mini symposiums for their
active role in the organization.

Last, but not least, we want to acknowledge all participants for their contri-
bution and efforts in making the conference an interesting, pleasant and suc-
cessful event.

On behalf of the organizing committee

Brahim Amaziane, Domingo Barrera, Driss Sbibih
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- Faculté des Sciences et Techniques d’Al Hoceima.
- Conseil de la Région de l’Oriental.
- Université de Grenade.
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Modelling, Simulation and Optimization of Gas

Transportation Networks
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Universidade de Santiago de Compostela
Facultad de Matemáticas. Campus Sur
15786 Santiago de Compostela, Spain

alfredo.bermudez@usc.es, julio.gonzalez@usc.es,
franciscojose.gonzalez@usc.es

Keywords: Gas networks, Mathematical modelling, Numerical methods, Op-
timization.

Abstract. The goal of the presentation is to summarize an industrial research
project related to mathematical methods for simulation and optimization of
gas transportation networks. In the first part, the one-dimensional dynamic
gas equations are recalled for a single pipe. Then, the gas network is modelled
by a directed graph and a system of equations for steady state simulation are
introduced. The existence of a solution to this system is proved and numerical
algorithms are given. Next, an optimization problem related to compression
stations is stated and numerically solved. Finally, some results for real gas
networks are shown.

1 Introduction

Managing a gas transport network is a complex problem because of the
great number of possibilities of routing the gas through the pipes (see Fig. 1).
The most important aim in this kind of systems is to fulfill the demand within
the pressure bounds, independently of its associated costs. However, some cost
drivers are also taken into account by means of different objective functions in
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Figure 1: Primary Spanish network.

order to manage the network in an efficient way. This work deals with math-
ematical modeling and optimization of gas transport networks, where a two-
stage procedure is proposed. In the first stage, optimization algorithms based
on mathematical programming are applied to make some decisions (whether
to activate compressor stations, control valves and other control elements) and
gives an initial solution to the second stage. The second stage, which is based
on control theory techniques, refines the solution to obtain more accurate re-
sults. Due to the reduced complexity in each stage, both can be solved within
reasonable runtimes for relatively large gas networks. Based on the mathemat-
ical methods involved, a software called GANESO has been developed for the
Reganosa company.

Mathematical modelling of gas flow in pipelines is an important subject
in planning and operating gas transportation networks (see reference books,
[1], [2]). Some recent papers have been devoted to the transient case (see [3],
[4]). Usually, they assume isothermal or isentropic flow (see [5]) but in real
networks neither temperature nor entropy remain constant because, first, there
is heat exchange with the environment (see [6],[7]) and second there is dis-
sipation in the boundary layer near the wall of the pipelines due to viscous
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friction. These features complicate the model because they lead to two respec-
tive source terms in the physical balance laws (see [8],[9],[10]). However, in
the present paper we restrict ourselves to the steady state case because it is
the one for which optimization can be done in a reasonable computing time.
Unlike other related works focused on the practical part, we are also interested
in mathematical analysis to get an existence theorem for the network model.

A gas network basically consists of a number of controllable elements such
as compressor stations and control valves that are connected by pipes where
the pressure of flowing gas decreases due to the friction on the walls. This
pressure loss makes difficult to guarantee the security of supply, that is to meet
the demand at the exit points with gas supplied at the entry points within some
pressure bounds. Therefore, compressor stations have to be employed to coun-
terbalance the pressure loss, but they consume a fraction of gas flowing through
the pipes (the so-called gas self-consumption). Taking this fact into account is
very important to manage the gas transport network efficiently, in order to
reduce this self-consumption in compressor stations. Thus, mathematical opti-
mization theory is an important tool to handle this problem (see, for instance,
[12, 13, 14, 15, 16, 17]).

In this work we present a simplified mathematical model which reproduces
the physical behavior of a gas network, including the aforementioned elements.
Regarding network optimization we will have to deal with mixed integer non-
linear programming (MINLP) problems. Indeed, there are many nonlinear
aspects, mainly due to the pressure loss in the pipes, to the gas consumption
formula in compressors and to the operation diagram of them. The model must
also account for the binary decisions regarding whether or not a given valve or
compressor is active. We propose a two-stage approach to tackle this complex
problem. In the first stage, the mathematical model of the gas flow in the net-
work is considered as a set of equations that are part of the constraints for the
optimization problem. Then, in the second stage, we employ methods based
on optimal control theory. This means that the equations of the model are not
included in the set of constraints. On the contrary, they allow us to eliminate
implicitly the so-called state variables in terms of the control or decision vari-
ables. The optimization problem of the first stage is solved numerically by
using a sequential linear programming (SLP) algorithm. Further details can be
found in [13] and [18]

2 One-dimensional model for gas flow in a pipe

Firstly, we write models for gas flow in single pipe. The starting point are
the conservation principles of thermomechanics:
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• Mass conservation equation:

A
∂ρ

∂t
(x, t) +

∂q

∂x
(x, t) = 0, (1)

where

– A is the area of the cross-sections (m2).

– ρ(x, t) is the average density on section x at time t (kg/m3).

– q(x, t) is the mass flow rate across the x section at time t (kg/s).

The mass-weighted average velocity on section x is defined by

v (x, t) =
q (x, t)

Aρ (x, t)
.

• Linear momentum equation:

∂(ρv)

∂t
(x, t) +

∂(ρv2)

∂x
(x, t) +

∂p

∂x
(x, t)

+
λρ(x, t)

2D
|v(x, t)|v(x, t)− gρ(x, t)h′(x) = 0. (2)

• Energy equation:

∂(ρE)

∂t
(x, t) +

∂((ρE + p)v)

∂x
(x, t) =

4β

D
(θext(x, t)− θ(x, t))

−gρ(x, t)v(x, t)h′(x). (3)

– ρ is the average mass density (kg/m3),

– p is the average thermodynamic pressure (N/m2),

– g is the gravity acceleration (m/s2),

– h(x) is the height of the pipe at the x cross-section (m),

– D is the diameter of the pipe (m),

– λ is the friction factor between the gas and the pipe walls; it is a
non-dimensional number depending on the diameter of the pipe,
the rugosity of its wall and the Reynolds number of the flow,

– E is the average specific total energy (J/kg),

– β is a heat transfer coefficient (W/m2K),

– θ is the average temperature (K),
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– θext is the exterior temperature (K).

• State equations

thermodynamic : p = Ẑ(p, θ)ρRθ, (4)

E = e+
1

2
v2, (5)

caloric : e = ê(θ) = ê(θref ) +

∫ θ

θref

ĉv(s) ds, (6)

where

– Ẑ(θ, p) is the compressibility factor (nondimensional),

– R is the gas constant (J/(kg K)),

– e is the specific internal energy (J/kg),

– θref is a reference temperature (K),

– ĉv(θ) is the specific heat at constant volume, at temperature θ (J/kg
K).

The computation of λ will be done by using the Colebrook’s equation
(see [19]):

1√
λ
= −2 log10

(
2.51

Re
√
λ
+

k

3.7D

)
= −2 log10

(
2.51πDη

4 |q| √λ
+

k

3.7D

)
,

(7)
where k is the roughness coefficient of the pipe (m).

The last term in (2) arises from the gravity force. In fact, the correct
expression of that term is gρ(x, t) sin(π − α(x)) (see Fig. 2) but, if the
slope of the pipeline is small, i.e., if

|h′(x)| � 1

then

sin(π − α(x)) ≈ tan(π − α(x)) = − tanα(x) = −h′(x).
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x(s)

L
π − α(x(s))

α(x(s))

ρg sin(π − α(x(s)) � −ρg tanα(x(s)) � −ρgh′(x(s))

s0

h(x(s))

s

Figure 2: The gravity force term.

2.1 Steady state model

From this point forward, we will suppose that the flow is in steady-state
and the temperature is given. Then, the partial derivatives with respect to time
are null and the energy equation is not needed. Hence, the system of equations
becomes

dq

dx
(x) = 0, (8)

A
dp

dx
(x) +

λ (q (x))

2DA

1

ρ (x)
|q (x)| q (x) +Agρ (x)

dh (x)

dx
= 0, (9)

Ẑ (p (x) , θ (x)) ρ (x)Rθ (x) = p (x) , (10)

where θ is the absolute temperature, which is supposed to be known lengthwise
the pipe. The last equation is the equation of state for real gases. Notations are
as follows:

R =
R
M

,

where R is the universal gas constant (J/(k-mol K), and M is the molar mass
(kg/k-mol). The compressibility factor, Z, depends on pressure and temper-
ature. It can be determined using different equations, like the van der Waals
equation, but in the gas transportation industry the AGA8 model is widely
used. This model is an empirical equation proposed by the American Gas As-
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sociation [20], namely,

Z = Ẑ (p, θ) = 1 + pr0.257− 0.533
pr
θr

, (11)

being pr := p/pc, θr := θ/θc, and pc and θc the critical pressure and the criti-
cal temperature, respectively. Let us recall that above the critical temperature
it is impossible to liquefy a gas, while the critical pressure is the minimum
pressure required to liquefy a gas at its critical temperature. For natural gas the
critical temperature is around 170 K and the critical pressure around 5 MPa.
Notice that the first equation implies that the mass flow is constant along the
pipe, q (x) = q ∀x ∈ (0, L).

2.2 Approximate model

For numerical simulation of gas transmission networks a simplified model
is used which is deduced by integrating the equation (9) between the ends of
the pipe, x = 0 and x = L and making certain approximations.

Firstly, the mean density in the section is replaced with the following ex-
pression, deduced from the equation of state for real gases:

ρ (x) =
p (x)

Z (p (x) , θ (x)) Rθ (x)
.

Thus, we obtain

Ap (x)
dp

dx
(x) +

λ(q)

2DA
Z (p (x) , θ (x)) Rθ (x) |q| q

+Ag
p2 (x)

Z (p (x) , θ (x)) Rθ (x)
h′(x) = 0. (12)

Integrating this equation from x = 0 to x = L and dividing by A/2 yields,

p2 (L)− p2 (0) = −λ (q)

DA2
R |q| q

∫ L

0
Z (p (x) , θ (x)) θ (x) dx

− 2g

R

∫ L

0

p2 (x)

Z (p (x) , θ (x)) θ (x)
h′(x) dx. (13)

At this point, we rewrite equation (13) by using the new variable u (x) :=
p2 (x),

u (L)− u (0) = −λ (q)

DA2
R |q| q

∫ L

0
Z (p (x) , θ (x)) θ (x) dx

− 2g

R

∫ L

0

u (x)

Z (p (x) , θ (x)) θ (x)

dh (x)

dx
dx. (14)
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Now, the integrals on the right-hand side are approximated using average
values of pressure and temperature in the pipe, denoted by pm and θm, respec-
tively, whose expression will be specified below:∫ L

0
Z (p (x) , θ (x)) θ (x) dx ≈ Z (pm, θm) θmL,∫ L

0

u (x)

Z (p (x) , θ (x)) θ (x)

dh (x)

dx
dx ≈ um

Z (pm, θm) θm
(h (L)− h (0)).

Replacing in (14), we finally obtain,

u (0)−u (L) =
λ (q)L

DA2
Rθm |q| qZ (pm, θm)+

2g

Rθm

um
Z (pm, θm)

(h (L)− h (0)) ,

(15)
Assuming that the section of the pipe is circular (A = πD2/4), we have,

u (0)− u (L) = G (pm, θm, q) +
2g

Rθm

um
Z (pm, θm)

(h (L)− h (0)) (16)

where

G (pm, θm, q) :=
16λ (q)L

π2D5
Rθm |q| qZ (pm, θm) , (17)

or, introducing μ (q) := λ (q) |q| q,

G (pm, θm, q) =
16μ (q)L

π2D5
RθmZ (pm, θm) , (18)

and the average um can be computed by the following alternatives:

um :=
u (0) + u (L)

2
, (19)

um :=
2

3

(
u (0) + u (L)− u (0)u (L)

u (0) + u (L)

)
, (20)

and similar expressions for θm. Let us recall that the absolute temperatures at
points x = 0 and x = L are assumed to be known.

3 Modelling the network

The gas transport network is modeled as a directed graph G = (N,E),
where N represents the set of n nodes and E the set of e edges. Thus, each
element of E is an ordered pair of elements in N .
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• The nodes represent the gas supply points, the gas consumption points,
the underground storages, the suction or discharge points in a compres-
sion station, the interconnection points among pipelines, and the points
where the latter change diameter or some other property.

• The edges represent the pipelines, the compressors (each compressor
links the suction node and the discharge node by the ratio of their in-
creasing pressures), the flow control valves (FCV) (where the mass flow
rate is imposed), the closed closing valves (where the mass flow is zero),
the bypasses or open closing valves, the pressure control valves (PCV)
(which link two nodes by the ratio of their decreasing pressures).

Concerning the flow, the magnitudes involved in the model are:

1. The pressure at the nodes: {pi : i = 1, · · · , n}. We denote by p the
column vector of n components: p = (p1, · · · , pn)t.

2. The mass flow rate exchanged with the outside of the network at the
nodes: {ci : i = 1, · · · , n}. We denote by c the column vector of n
components: c = (c1, · · · , cn)t.

3. The mass flow rate along the edges: {qj : j = 1, · · · , e}. We denote by
q the column vector of e components: q = (q1, · · · , qe)t .

In order to analyze and solve the model, it is convenient to introduce the square
pressure at the nodes: {ui : i = 1, · · · , n}. Vector u will denote the column
vector of n components, u = (u1, · · · , un)t = (p21, · · · , p2n)t.

The equations of the gas network model are going to be mathematical ex-
pressions of mass conservation at nodes and head loss along edges:

3.1 Mass conservation

It is also known as Kirchhoff’s first law of the network because of its anal-
ogy with this law for electric circuits. It establishes that, at any node, the sum
of the ingoing mass flow rates must be equal to the sum of outgoing mass flow
rates. Thanks to the incidence matrix of the graph representing the network,
A, it can be written in a compact way as

Aq = c. (21)

An important property of matrix A is the following. Let e be the vector of Rn

whose components are all equal to 1. From the definition of A it is straightfor-
ward to check that Ate = 0. Then, scalar multiplication of equation (21) by e
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leads to

c · e =
n∑

i=1

ci = Aq · e = q · Ate = 0, (22)

which is an obvious necessary condition for the existence of a solution to the
network model: since the network is in steady state, the algebraic sum of the
mass flow rates exchanged with the outside of the network has to be null.

The above property implies that the maximum number of independent equa-
tions in the linear system (21) is n− 1. Thus, even if all components of vector
c are known, in general we need other equations to uniquely compute the flows
in the network. These additional equations will be written in the next section
and come from the linear momentum conservation principle. Meanwhile, let
us analyze the set of solutions of the mass conservation equation (21) assuming
that c is given satisfying (22). For this purpose, let us denote by q∗ a particular
solution orthogonal to ker(A). Then the set of solutions is the linear manifold
q∗ + ker(A). Let us take any w ∈ ker(A). This means that Aw = 0. If the
only physical constraint were mass conservation, the flow corresponding to
vector w could be considered as superfluous because it does not help to trans-
port gas from emission to consumption points. However, superfluous flows are
often needed to meet the linear momentum conservation equations to be given
below. In other words, it is unlikely that the vector of mass flow rates in a real
network be orthogonal to the vector space ker(A).

The flow vectors belonging to the kernel of A are called cycling flows. The
orthogonal projection of the actual vector of mass flow rates in a network onto
the space of cycling flows will be called the superfluous flows vector. We want
to emphasize once again that the latter are often needed in order to comply
with the momentum conservation principle.

For some particular calculations it can be necessary to “eliminate” the su-
perfluous flow vector. This can be done by making the projection of the mass
flow rate vector onto the orthogonal space to ker(A). A basis of this kernel can
be obtained from the so-called cycle matrix which, in its turn, can be obtained
by means of “graph algorithms” like the depth-first search (DFS) or “algebraic
methods” based on the singular-value decomposition (SVD) of matrix A.

3.1.1 Notations

Firstly, let us define the dimension of the different kind of nodes and edges:

• np: number of nodes where the pressure is imposed,
• er: number of edges corresponding to compressors or pressure control

valves,
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• et: number of flow control valves,
• ec: number of closed closing valves,
• ef = e− et − ec − er: number of edges which are neither flow control

valves, nor closed closing valves, nor compressors, nor pressure con-
trol valves. We refer to these edges as free edges and, for the sake of
exposition, they will be numbered first.

Then the data of the model are the following:

• αR: vector of differences of square pressures between the two nodes of
edges associated with compressors or pressure control valves (er com-
ponents),

• pU : vector of imposed pressures (np components),
• uU : vector of imposed square pressures (np components),
• cD: vector of imposed mass flow rates exchanged with the outside of

the network (n− np components),
• qV : vector of imposed mass flow rates (ev components, with ev = et +
ec).

Consequently, the unknowns of the model are the following:

• pD: vector of pressures at nodes where pressure is not imposed (n− np

components),
• uD: vector of square pressures at nodes where square pressure is not

imposed (n− np components),
• qR: vector of mass flow rates along the edges associated with compres-

sors or pressure control valves (er components),
• qF : vector of mass flow rates along the free edges (ef components),
• cU : vector of mass flow rates exchanged with the outside of the network

at nodes where pressure is imposed (np components),

According to the above notations, the mass conservation equation (21) can
be rewritten in the form

AFq
F +ARq

R − U tcU = DtcD −AV q
V . (23)

Let us left-multiply this equality by matrix D. We get (notice that DU t = 0
and DDt = I),

DAFq
F +DARq

R = g, (24)

with
g := cD −DAV q

V . (25)
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3.2 Momentum conservation

It states that there is a pressure drop along pipelines due to the viscous stress
arising from friction with their walls which can be computed with the function
introduced in (18). This function can be rewritten as

Gj (pmj , θmj , qj) = rj (pmj , θmj)μj (qj) , (26)

where
rj (pmj , θmj) :=

16Lj R

π2D5
j

θmjZ (pmj , θmj) . (27)

Let us suppose that the free edges are numbered first. We define the “diagonal”
mapping GF : Ref → R

ef by

GF

(
pm,θm,qF

)
j

= Gj

(
pmj , θmj , q

F
j

)
, j = 1, · · · , ef

and the vector bF ∈ R
ef by

bFj =
2g

Rθmj

umj

Z (pmj , θmj)

(
HM2,j −HM1,j

)
, (28)

where Hi denotes the height of the i-th node, umj is the average value of u
along the j-th edge given by

umj =
uM1,j + uM2,j

2
,

and M1,j and M2,j are the two nodes of the j-th edge. We have,

At
Fu−GF

(
pm,θm,qF

)
=bF (u), (29)

At
Ru =αR, (30)

and, since u = U tuU +DtuD, the first equation can also be written as

At
FDtuD −GF

(
pm,θm,qF

)
= f , (31)

with
f := bF (u)−At

FU tuU (32)

and the second one as
At

RDtuD = k, (33)

with
k := αR −At

RU tuU . (34)
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3.3 The full model

Let us summarize the model of the gas transportation network:
Given,

• uU : the vector of imposed square pressures,

• qV : the vector of mass flow rates at the edges with flow control valves,

• αR: the vector of differences of square pressures between the two nodes
of edges associated with compressors or pressure control valves,

• cD: the vector of the mass flow rates exchanged with the outside of the
network, at nodes where pressure is not imposed,

find vectors uD, qF , qR and cU such that

DAFq
F +DARq

R = g, (35)

At
FDtuD −GF

(
qF

)
= f , (36)

At
RDtuD = k, (37)

AFq
F +ARq

R − U tcU = DtcD −AV q
V , (38)

with g, f and k given by (25), (32) and (34), respectively.

The unknowns of the model are uD (n − np numbers), qF (ef numbers),
qR (er numbers), and cU (np numbers) so that the total number of unknowns
is n − np + ef + er + np = n + ef + er, which is equal to the number of
equations: n− np + ef + er + np = n+ ef + er.

Let us notice that, if we can solve equations (35), (36) and (37) for uD, qF

and qR, then (38) allows us to compute cU by

cU = UAFq
F + UARq

R + UAV q
V ,

in a second step. This is because UU t = I and UDt = 0.
We observe that unknown vector uD appears in the expression of the right-

hand side f of equation (36), namely, in vector bF (u). Thus, it is important
to rewrite this equation by putting this term on the left-hand side. For this
purpose, let us introduce the following notation:

wj =
g

RθmjZ(pm, θmj)

(
HM2j −HM1j

)
, (39)

for 1 ≤ j ≤ ef , and W denotes the ef × ef diagonal matrix

Wlj = wjδlj , 1 ≤ l, j ≤ ef .
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Let the n× e matrix Λ be defined, for 1 ≤ i ≤ n, 1 ≤ j ≤ e, by

Λij = δiM1j + δiM2j

where δ is the Kronecker’s delta. Then vector bF (u) can be written as

bF (u) = WFΛtu = WFΛt
(DtuD + U tuU )

and (36) becomes (At
F −WFΛt

)DtuD −GF

(
qF

)
= h, (40)

with
h :=

(WFΛt −At
F

)U tuU .

Now, from (40) we can obtain qF as

qF = G−1
F

((At
F −WFΛt

)DtuD − h
)
,

and replacing this expression in (35) it can be written in terms of uD and qR,
namely,

DAFG
−1
F

((At
F −WFΛt

)DtuD − h
)
+DARq

R = g. (41)

In order to prove the existence of a solution to (37) and (41) it is convenient to
subtract the term

DΛF tWG−1
F

((At
F −WFΛt

)DtuD − h
)
,

to both sides of (41). We get

D(AF − ΛF tW)
G−1

F

((At
F −WFΛt

)DtuD − h
)
+DARq

R

= g −DΛF tWG−1
F

((At
F −WFΛt

)DtuD − h
)
.

(42)

Finally, by introducing the (n− np)× ef matrix

B := D(AF − ΛF tW)
,

this equation can be rewritten as

BG−1
F

(
BtuD − h

)
+DARq

R = g −DΛF tWG−1
F

(
BtuD − h

)
. (43)

As mentioned before, matrix W depends on the solution through the com-
pressibility factor Z because this parameter is a function of pressure which, in
its turn, is the square root of u. The same is true for mapping GF .
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3.4 Existence of solution. Numerical methods

Existence of solution to problem (43) has been shown in [11] under quite
general assumptions. The proof consists of two step. In the first one, convex
analysis tools are used and, in the second one, the Brouwer’s fixed point theo-
rem is applied. Moreover, as (43) is a nonlinear system of algebraic equations,
it can be solved by using Newton’s algorithm (see [18] for further details).

4 Optimization

In order to optimize the gas transport network, different optimization goals
can be considered: minimize the self-consumption in the compressor stations,
minimize the boil-off gas in the regasification plants, maximize the exporta-
tion from any area of the network to another area or reduce the bottlenecks.
For the sake of simplicity, in this paper we will focus on minimizing the self-
consumption in the compressor stations, that is, we want to minimize the func-
tion defined by

Q =
1

εξζLCV

{
γ

γ − 1
Z(p1, θ1)Rθ1

(
(
p2
p1

)
γ−1
γ − 1

)
q

}
, kg/s.

This minimization is achieved by modifying the compression ratio at the com-
pressor stations, the decompression ratio at PCVs, the flow at the FCVs, the
flow at the regasification plants or at the international connections, and others
variables. Let us point out that all these variables are also known, in the math-
ematical systems theory, as control variables. Once the optimization goal has
been chosen, it is important to apply a set of constraints which reproduce the
real conditions of the problem. These conditions can be put into three different
groups:

• Physical: mass conservation equations and pressure loss equations; they
coincide with the mathematical model of the network.

• Security of supply: imposed mass flow rate at exit points, minimum and
maximum pressure allowed at each node of the network and capacity
bounds at each pipe of the network.

• Compressor stations: every compressor must work accordingly to its
operating diagram and its technical characteristics. Fig. 3 shows an ex-
ample of operating diagram of a compressor. The functions defining this
diagram lead to nonlinear constraints (see [16] or [18] for more details).

A two-stage procedure to tackle this problem has been developed. In the
first stage the complexity of gas physics is reduced while taking all discrete
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Figure 3: Compressor diagram.

decisions into account. Thus, the first stage provides all discrete decisions
and gives an initial solution to the second stage. The second stage refines the
solution obtained by the first stage, providing a result that uses a slightly more
precise formulation of the physical constraints and that may be used for the
study and management of the gas network.

4.1 First stage

The idea of this stage is to obtain an initial solution, which is used to con-
figure the network (compressor stations, PCVs, ...), disregarding some second
order physical effects. Notice that it involves solving a mixed integer nonlin-
ear problem. Indeed, firstly there are a lot of nonlinear aspects, mainly due
to the pressure loss in the pipes, the gas consumption and the operation range
of the compressors. Secondly, there are binary decisions regarding whether
or not a given valve or compressor is active. This approach does not use the
simulator, which means that the group of conditions included in physics’ (and
then in the state equation) are imposed as a set of constraints of the problem.
Regarding the optimization goal, the pressures and mass flow rates are inde-
pendent variables. One of the algorithms that can be used to get a solution to
this problem is the classical Sequential Linear Programming (SLP) algorithm.
This algorithm is widely studied in the literature and it has a very good be-
havior in practice (see [21, Chap. 10]). It consists in solving iteratively linear
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approximations of the nonlinear problem until the algorithm finds an optimal
suitable solution. There are different ways to linearize the functions and the
constraints, e.g. Taylor approximations. Its main characteristics are that it
does local search based on bounded size steps at each iteration and it provides
a sequence whose limit points are KKT (Karush-Kuhn-Tucker) points. For our
purpose, the classical SLP has one limitation since it does not accommodate
binary variables. In order to avoid this limitation, a modified version of the
algorithm has been developed allowing us to introduce the binary variables.
Besides, it also allows unbounded size steps, meaning that at every iteration
a mixed integer linear. optimization problem is solved. On the downside, it
is more common to observe convergence problems, such as cycling, in this
modified version of classical SLP than in the standard version.

4.2 Second stage

The aim of this stage is to refine the solution given by the first stage to ob-
tain a result which reproduces the physical behavior of the network and fulfills
all the original constraints. This second stage is based on optimal control tech-
niques. It employs the network model to implicitly express the state variables
(pressures and mass flow rates) in terms of control variables. In this way, the
independent variables for the optimization goal are only the control variables.
Moreover, the final solution uses slightly more precise formulations of the net-
work model. Given that the configuration provided by the first stage contains
all the discrete decisions made, this approach deals with a continuous nonlin-
ear problem. Again, the classical SLP can be used as an algorithm to solve the
problem but, unlike the first stage, the optimization goal and the constraints
are locally linearized by using the derivatives respect to the control variables.
They are computed by using the so-called adjoint state.

5 Numerical results

In this section we show an application of GANESO code to the primary
Spanish gas network. The conditions are the following:

• International connections and underground facilities are taken as fixed
inputs.

• The optimizer has freedom to choose the distribution of the input mass
flow rates from the regasification plants and the international connec-
tions.

• The optimizer has freedom to choose how to use compressor stations,
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Figure 4: Usual management without optimization.

PCVs and FCVs.

• The cost function is based on the gas self-consumption in the compressor
stations.

• Scenario: working day of January with low demand.

In Fig. 4 we show the real situation of the network, while Fig. 5 show
the optimized management. Table 1 shows the optimized entry flows into the
network and Table 2 the costs at the stations.

Before Vs After:

• From South = Cartagena + Huelva = -134.3099 GWh/d

• From North = Reganosa + Barcelona + Bilbao = +78.9250 GWh/d

5.1 Conclusions

• GANESO has optimized the distribution of flow among the regasifica-
tion plants and the use of compressor stations.

• Based on this management, the cost is about one-sixth the usual one.

• The optimization took 5-10 minutes on a desktop computer.
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Figure 5: Optimized management.

[GWh/day] No opt. With opt.
Barcelona 131.8407 241.6383

Bilbao 113.8560 90.6997
Cartagena 85.3920 38.2229

Huelva 170.7840 83.6432
Reganosa 114.1571 106.4408
Sagunto 56.9280 112.3129

Table 1: Optimized entry flows
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[GWh/day] No opt. With opt.
Alcazar 0.2909 -
Algete - -

Almendralejo 0.2650 0.1587
Baneras - -

Chinchilla - -
Cordoba 1 - -
Cordoba 2 - -
Crevillente - -

Denia - -
Haro - -

Montesa - -
Navarra - -
Paterna - -

Puertollano - -
Sevilla - -
Tivisa 0.2229 -

V. Arnedo - -
Zamora 0.1516 -

Zaragoza - -
TOTAL 0.9304 0.1587

Table 2: Compression cost at the stations.
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